题目
剑指 Offer 63. 股票的最大利润
假设把某股票的价格按照时间先后顺序存储在数组中,请问买卖该股票一次可能获得的最大利润是多少?
示例 1:
1 | 输入: [7,1,5,3,6,4] |
示例 2:
1 | 输入: [7,6,4,3,1] |
限制:
1 | 0 <= 数组长度 <= 10^5 |
注意:本题与主站 121 题相同:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock/
代码
Go:暴力法
1 | func maxProfit(prices []int) int { |
如何进一步优化
动态规划五部曲分析如下:
1.确定dp数组(dp table)以及下标的含义 dp[i][0] 表示第i天持有股票所得最多现金
一开始现金是0,那么加入第i天买入股票现金就是 -prices[i], 这是一个负数。
dp[i][1] 表示第i天不持有股票所得最多现金
注意这里说的是“持有”,“持有”不代表就是当天“买入”!也有可能是昨天就买入了,今天保持持有的状态
2.确定递推公式 如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来
· 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0] · 第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i] 那么dp[i][0]应该选所得现金最大的,所以dp[i][0] = max(dp[i - 1][0], -prices[i]);
如果第i天不持有股票即dp[i][1], 也可以由两个状态推出来
· 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1] · 第i天卖出股票,所得现金就是按照今天股票佳价格卖出后所得现金即:prices[i] + dp[i - 1][0] 同样dp[i][1]取最大的,dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
3.dp数组如何初始化 由递推公式 dp[i][0] = max(dp[i - 1][0], -prices[i]); 和 dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);可以看出
其基础都是要从dp[0][0]和dp[0][1]推导出来。
那么dp[0][0]表示第0天持有股票,此时的持有股票就一定是买入股票了,因为不可能有前一天推出来,所以dp[0][0] -= prices[0];
dp[0][1]表示第0天不持有股票,不持有股票那么现金就是0,所以dp[0][1] = 0;
4.确定遍历顺序 从递推公式可以看出dp[i]都是有dp[i - 1]推导出来的,那么一定是从前向后遍历。
5.举例推导dp数组
代码如下
1 | func maxProfit(prices []int) int { |